

Strategic Academic Planning Committee 2007-2008

Proposal Title: Notre Dame Integrated Imaging Facility

Principal Investigator: Bradley D. Smith

Proposal Participants:

Last Name	First Name	Department
Bohn	Paul	Chemical and Biomolecular Engineering
Carmichael	Ian	Radiation Laboratory
Castellino	Frank	Chemistry and Biochemistry & Transgene Center
D'Souza Schorey	Crislyn	Biological Sciences
Goodson	Holly	Chemistry and Biochemistry
Hartland	Gregory	Chemistry and Biochemistry
Jankó	Boldizsár	Physics & Institute for Theoretical Sciences
Kamat	Prashant	Chemistry and Biochemistry
Kuno	Masaru	Chemistry and Biochemistry
McGinn	Paul	Chemical and Biomolecular Engineering
Niebur	Glen	Aerospace and Mechanical Engineering
Schulz	Robert	Biological Sciences
Shrout	Joshua	Civil Engineering and Geological Sciences
Suckow	Mark	Freimann Life Science Center
Vaughan	Kevin	Biological Life Sciences
Zhu	Yingxi	Chemical and Biomolecular Engineering

Abstract

Microscopic and biological imaging is the most common experimental technique employed by science and engineering researchers at the University of Notre Dame. The purpose of this proposal is to establish the Notre Dame Integrated Imaging Facility (NDIIF), a stateof the art research core that will consolidate the imaging capacity that is currently dispersed around campus and augment it with powerful new imaging modalities. A related goal is to create an interactive network of research groups, who are connected by their interest in imaging technology, and allow them to cross-fertilize ideas and form interdisciplinary collaborations. The NDIIF will make available to the Notre Dame science and engineering community an integrated suite of sophisticated microscopes and imaging stations that enable the expert users to attack the most complex modern research problems and, equally important, the resident professional staff (technicians and research specialists) to guide the non-expert users and allow them to conduct experiments that were previously beyond their limits. The NDIIF will immediately enhance the performance and reputation of dozens of individual laboratories that are already conducting international quality imaging research, and as a consequence it will establish Notre Dame as a preeminent institution for advanced imaging studies. It will enable a closely connected community of scientists and engineers to join forces and solve a wide range of important problems in high priority research fields such as biomedical science, nanoelectronics, systems biology, advanced diagnostics, functional materials, and zero emission energy production.